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Abstract - It is proposed a new approach for solution of: 1) direct boundary value problems for the elliptic and 
parabolic partial differential equations; 2) coefficient inverse problems for the Laplace equation. The approach is 
based on the, proposed by author, General Ray Principle. It leads to new GR-method that uses the explicit 
formulas with fast inversion of the Radon transformation. The case of the domain with the complex geometry is 
considered. GR-method is realized by fast algorithms and MATLAB software, whose quality is justified by 
numerical experiments. Application to Electrical Tomography is presented.  

1.  INTRODUCTION 

There are two main approaches for solving boundary value problems for partial differential equations in 
analytical form: Fourier decomposition and the Green function method. The numerical algorithms are based on 
the Finite Differences method, Finite Elements (Finite Volume) method and the Boundary Integral Equation 
method.  All methods and algorithms constructed on the bases of these approaches have some difficulties in 
realization for the complex geometrical form of the domainΩ .  The Green function method is the explicit one 
[1], but for arbitrary coefficients of equations it is difficult to construct the Green function even for the simple 
geometry of . Numerical approaches lead to solving systems of linear algebraic equations [2] that require a lot 
of computer time and memory. Hence, the development of new fast algorithms for solution of the problems 
under investigation is very actual. 

Ω

We consider here a new approach for the solution of direct and inverse problems on the base of the General 
Ray Principle (GRP), proposed by the author in [3], [4] for the stationary waves field. GRP leads to explicit 
analytical formulas (GR-method) and fast algorithms, proposed firstly in [3] and developed numerically in [4] – 
[6] for the Dirichlet boundary value problem in an arbitrary simply connected star domain  with continuous 
contour Γ . Here we extend the proposed approach to more general type of equations and domains  for direct 
problems. We describe also the GR-method for the solution of the coefficient inverse problems for the elliptic 
equation of the Laplace type and its application to Electrical Tomography. 
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2.  STATEMENT OF DIRECT BOUNDARY PROBLEMS FOR ELLIPTIC AND PARABOLIC 
EQUATIONS 
Here we consider the Dirichlet or Neumann boundary value problems for elliptic equations, namely 
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with respect to the function  inside the plane domain ( yxu , Ω  with a boundary Γ .  Here or  
are given functions for ( , , k is a real number, 

),( yxf ),( yxg
)x y ∈Γ ( ) 0, >yxε . If k=0, ( )yx,ψ =0, we have the Laplace 

equation written in the divergent form. The case ( )yx,ψ  ≠ 0 corresponds to Poisson equation. For k ≠ 0, 
( ) 1, =yxε  we have the Helmholtz equation. The problem (1) describes the distribution of the “potential” 

function  for any field of stationary waves, which can be interpreted as electrostatic, elastic or optic field 
[1], [2]. 
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We consider the boundary value problem for the parabolic equation in the form: 
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The specific element of this traditional statement is the unbounded character of the domain  and the 
corresponding boundary  in range of variables t and x: 

Ω
Γ Ω =Ω ≡ [0, ∞) x[-1,1]. We will suppose the finiteness 

of the solution in the domain Ω . 
 
3.  LOCAL RAY PROPERTY AND GENERAL RAY METHOD 
In [3], [4] the General Ray (GR) principle was proposed that gives no traditional formalization of mathematical 
models for considered physical field and corresponding direct and inverse problems. GR-principle consists in the 
next main assumptions: 
    1) the physical field can be simulated mathematically by the superposition of plane vector fields , each of 
them is parallel to the direction along some straight line l , at the superposition corresponds to all lines l ; 

)(lV
r

    2) the field )(lV
r

 is characterized by some function ; ),( yxu
    3) we know some characteristics such as values of function  and/or  flow of the vector  in any 

boundary point  

),( yxu )(lV
r

( )00
0 , yxP =  of the domain. 

Application of the of the GR Principle to the problems under investigation means to construct an analogue of 
eqns. (1), (2) describing the distribution  of the function ( )yxu , and ( )xtu ,  along of “General Local Rays", 
which are presented by some straight line l  with parameterization due a parameter τ  : ϕτϕ sincos −= px ,  

ϕτϕ cossin += py , in the case of the elliptic equation, or with parameterization: ϕτϕ sincos −= px ,  

ϕτϕ cossin += pt  in the case of the parabolic equation. Here p  is a length of the perpendicular from the 
centre of coordinates to the line ,  l [ ]πϕ ,0∈  is the angle between the axis x and this perpendicular. Using this 
parameterization, we shall define functions ( )yxu ,  (and ( )xtu ,  for eqn. (2)), ( )yx,ε  , , , ),( yxf ),( yxg

( yx, )ψ  at  or at ( )   for fixed p, ( ) lyx ∈, ,t x l∈ ϕ  as functions ( )τu , ( )τε , ( )τf , ( )τg , ( )τψ  of variable τ . 
We suppose that the domain Ω  is a convex one. Let us define for every fixed  and p ϕ  the functions 

( ) ),(, 00 τϕ upu =  ( ) ),(, 11 τϕ upu =  for parameters 10 ,ττ ,  which correspond to the points of the intersection 
of the line  and boundary of the domain.  l

Hence, the GR Principle leads to the assemblage (depending of p,ϕ ) of ordinary differential equations: 
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as the local analog of the eqn. (1), and the corresponding analog of the eqn. (2): 
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Boundary conditions lead to the corresponding local boundary conditions for ( )τu  at points 10 ,ττ . We will 

designate the solution of the local problem (3) or (4) with such boundary conditions as ( )τu .  For standard 

domains such as a circle or rectangular Ω   it is simple to calculate 10 ,ττ  and so the functions ( ),,0 ϕpu  
( ),,1 ϕpu  using boundary functions , f g , or , , , and then obtain the solution  0f 1−f 1+f ( )τu  in explicit 

analytical or approximate form, using well known standard formulas and numerical methods for the solution of 
boundary value problems for ordinary differential equations. 

Formulation of Local Ray property (LRP): the adequate local description of the solution  on any 
straight line l  (Local Ray) can be represented  by the function 

u
( )τu , so that the following final global formula 

for the solution of eqns (1) and (2) is true 

( )
1

0

1( , ) [ ] , ( , )u R u d
τ

τ
ξ η τ τ ξ η−= ∫ ∈ Ω ,                                                (5) 

where  is inverse Radon transform,  1−R ),( ηξ =(x, y) for the solution of elliptic problem (1), ),( ηξ =(t, x) for the 
solution of parabolic problem (2). 
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      Formula (5) gives the explicit solution for a considered class of boundary value problems in arbitrary convex 
domains  with continuous contourΓ . Numerical realization of this formula we named the General Ray (GR) 
Method for the direct problems.  We will concretise below formula (5) for particular cases of equations and 
demonstrate its validity by numerical examples.  

Ω

We suppose that the function and its first derivatives are localised in),( yxu Ω , i.e. they are equal to zero 
outside Ω . We want to underline that under the assumption made we use the Radon transformation [14] in local 
imaging modality that implies validity of considerations presented below.  
 
4.  SOLUTION OF DIRECT BOUNDARY VALUE PROBLEMS 
For k=0 , ( yx, )ψ =0, in the case of the Laplace equation with variable coefficients, we obtain the mentioned 
analogue of eqn. (1) on the line  for every fixed  and l p ϕ  given by the following ordinary differential equation 

( ( ) ( ) ) 0u τ τε τ τ = .                                                                (6) 
We introduce the functions 
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Then, integrating twice eqn. (6), we obtain for the solution of the Dirichlet problem the following formula 
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For the case ( ) 1, =yxε  we have the more simple formula 
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For the solution of the Neumann boundary value problem we present here the formula, corresponding to the 

domain of the unit circle and ( ) 1, =yxε : 

( ) [ ]2/12
01

1 )1))(,(),((, ppgpgRyxu −+= − ϕϕ +C,                                                 (10) 

where C is arbitrary constant, functions 1,0),,( =ipgi ϕ ,  correspond to the Neumann boundary condition 
function  in (1), calculated at the boundary points ),( yxg 10 ,ττ . The unique solution can be obtained from 
function (10) by additional interpolation condition in one point on the boundary. 

The Dirichlet boundary value problem for the Poisson equation corresponds to k=0 , ( yx, )ψ ≠0. The main 
formula for its solution is the following 
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where )(2 tψ , )(3 tψ  are the second and the third  primitive functions of ( )tψ .  

For  k ≠ 0, ( ) 1, =yxε  we have the Helmholtz equation. For the no resonance case, when  

)21()1()( 2 mprkk +≠−≡ πϕ , =0,±1, ±2,…, the solution of the Dirichlet problem is given by formula: m
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The resonance case is just under the author investigation. 

The main formula for the solution of the boundary value problem (2) for parabolic equations is the following 
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5.  TRANSFORMATION OF DOMAINS WITH COMPLICATED GEOMETRY TO THE UNIT 
CIRCLE  
In [4] - [6] it was proposed a reduction of the Dirichlet problem for the Laplace equation for an arbitrary simply 
connected star domain  with continuous contourΩ Γ  to the same problem on the unit circle. We make some 
change of variables, using equation for the curve Γ , which leads to the same problem with the standard  as the 
unit circle circumference. Let the continuous contour

Γ
Γ  of the plane simply connected star shaped domain Ω  be 

represented as the curve, defined in the polar system of coordinates ,r α  by equation ( )0r r α= , where  is 
known function that does not vanish. The mentioned transformation of the domain 

0r
Ω  to the unit circle is the 

affine mapping, determined in the new polar coordinates r , % α%  by the following formula 

( )0, /r r rα α= =% % α ,                                                                (14) 
which does not change the Laplace equation. 

The mapping (14) does not require solution of any equations, does not include any bulky manipulation with 
complex variables.  Hence, this transformation is realised by very fast algorithm, which is justified in [4], [5], [6] 
by numerical experiments for sufficiently complicated functions and domains.  

This transformation is generalized for domains, compound of a finite number of the simply connected star 
domains.  Some examples are presented below for the Laplace equation. 

We generalized also the developed approach for the class of boundary value problems for elliptic eqns (1). 
We can reduce such problems to the similar ones on the unit circle using corresponding modifications of the 
coefficient  k  and the functions , ),( yxg ( )yx,ψ .  
 
6. RESULTS OF NUMERICAL EXPERIMENTS FOR DIRECT PROBLEMS 
We have constructed the algorithmic and program realization of  GR–method for various types of problems in 
MATLAB.  We used the uniform discretization of variables ],1,1[−∈p ],0[ πϕ ∈ , so as for variables t, x, y, with 
n nodes. To calculate the inverse Radon transform for discrete data we constructed the original modification [7] 
of iradon program from MATLAB package. We made testes on mathematically simulated model examples with 
known exact functions , , , , ( )yxu , ( )yx,ε ),( yxf ),( yxg ( )yx,ψ .  

We present in Figure 1 some results for solution of the Dirichlet boundary value problem for Laplace 
equation on the well known standard simply connected star domain as “cross”  - in graph a),   and compound 
from two simply connected star domains “double cross” - in graphs b) – e).  

We present below numerical experiments of solution for elliptic problems, which demonstrate the quality 
of the GR-method, for the case of the unit circle, because the case of more complicated domains Ω can be 
reduced to it. It is sufficiently to choose parameters 10 ,ττ  for the unit circle circumference by formulas 

, and then calculate the functions 2/12
1,0 )1( p−= mτ ( ) ),,(, ii

i yxfpu =ϕ cos sini
ix p ϕ τ ϕ= − ,  

. sin cos , 0,1i
iy p iϕ τ ϕ= + =

Let us define as ( )yxun ,  the approximations obtained by formulas (8) - (13) for discrete case. We 
introduce the discrete relative medium estimations rm to demonstrate the quality of approximation: 

, 1
2

( , )

| ( , ) ( , ) |1( )
max | ( , ) |
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n

n i j i ji j

i jx y

u x y u x y
rm n

n u x y
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∈Ω

Σ −
= .                                                  (15) 
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a)                                          b)                                                      c) 
 

                                      
d) e) 
 

Figure 1. Examples of solutions of the Dirichlet boundary value problem for Laplace equation. 
 

Some results for solution the Dirichlet boundary value problem for the Laplace equation on the unite circle 
for ( ) )cos(/1, yxyx +=ε , n = 101 are presented in Figure 2. One model example of solution obtained using the 
proposed algorithm of the Neumann problem for the Laplace equation is presented in Figure 3. Numerical results 
for the Dirichlet problem for Poisson equation are presented in Figures 4 and 5. For the Helmholtz equation one 
result of the numerical solution of model examples for k= 0.1 2  is presented in Figure 6.  
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         Figure 2. n=101; rm = 0.0452;                 Figure 3. Solution of the             Figure 4.  n=50; rm = 0.0265. 
                        ( ) )cos(/1, yxyx +=ε                      Neumann problem. 
 

                                    
 

                     Figure 5. n=50, rm =  0.1403.                           Figure 6. Solution of the Helmholtz equation. 
 
Some examples of solution of the parabolic problem (2) are presented in Figures 7 – 9. 

                          
Figure 7.                                                    Figure 8.                                                   Figure 9. 
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7. STATEMENT OF COEFFICIENT INVERSE PROBLEM FOR THE LAPLACE TYPE EQUATION 
Let us consider a coefficient inverse problem for the Laplace type eqn. (1) when k=0 , ( yx,ψ =0, with respect 

to the function ( , )x yε , with functions ( )yxJ n , , ( )yxu ,0  given on the curve Γ  and the following boundary 
conditions satisfied: 

( ) ( ) ( ),
, ,n

u x y
x y J

n
ε

∂
=

∂
x y ,  ( ) Γ∈yx,                                        (16) 

( ) ( )yxuyxu ,, 0= ,  ( ) Γ∈yx, .                                (17) 

Here 
n∂
∂  is the normal derivative at the points of the boundary curve Γ . Traditional approach for solving this 

inverse problem leads to a nonlinear ill-posed problem [11].  
We propose here another approach and statement that use GR–principle, i.e. we consider the field described 

by potential function  as the stream flow of “general rays". Let us describe one example to demonstrate 
reasons in favour of applicability of the GR–principle. For simplicity we put below  as the unit circle. In 
Figure 10 we present the corresponding model structure, which consists of two concentric circles: unit circle 

( yxu , )
Ω

Ω  
as the homogeneous background with ( , ) 1x yε ≡ and one non-homogeneous element  as the circle of radius 
r <1. Really, as it is analytically proved in [13] for the case of the electric field and is shown on the left part of 
Figure 10, the field has a small perturbation in the neighbourhood of 

1Ω

1Ω , caused by this non-homogeneity. Let 
us change the region  by  rectangles with the long boards parallel to the line  and with short ones 
intersecting the internal circumference, as it is shown in the right part of Figure 10.  

1Ω n l
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y y

x x
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n

  
Figure 10. Interpretation of the domain  approximated by rectangles  

in justification of applicability of GR-principle. 
  

Suppose that the values of the potential and induction at the points of this approximate boundary are equal to the 
values of the potential and induction of the external field. That is, we neglect the small perturbation of the 
external field in the neighbourhood of , caused by this non-homogeneity. So, as it demonstrated in the right 
part of Figure 10, even in the neighbourhood of 

1Ω

1Ω , we can consider the lines of the electric field as straight 
lines.   

The GR–principle gives us eqn. (3) . We consider also the following boundary conditions 
 

( ) ( )0 0( ) ,u J pτε τ τ = ϕ                               (18) 
 

( ) ( ) ( )0 0 ,u u v pτ τ ϕ− − = ,                                      (19) 2 1/ 2
0 (1 )pτ = − −

for given functions ),( ϕpv  and ),( ϕpJ . Equations (6), (18) and (19) constitute the basic mathematical model 
for the inverse problem of reconstructing the coefficient ( , )x yε . 

Supposing that different components in the considered structure have the smooth distribution such that the 
functions ( ) ( )uτε τ τ  and ( )uτ τ  are continuous and integrating twice the eqn. (6) with respect to τ  we 
obtain for ( , )x yε  the following formula  

( ) 1 ( , ), 1
( , )

v px y R
J p

ϕε
ϕ

− ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
         (20) 

where  is the inverse Radon transform operator. Formula (20) represents the Scanning General Ray method 
for the inverse problem. This formula can be generalised and applied also for structures with piecewise constant 
characteristics.  

1−R
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8.  APPLICATION TO THE ELECTRICAL TOMOGRAPHY 
Electrical Impedance Tomography (EIT) is the most developed approach in electrical tomography that includes 
the resistance (ERT) and capacitance (ECT) tomography [15]. We propose here another variant of the electrical 
tomography, when the external electromagnetic field ( )lV

r
 is produced by active electrodes, located outside of 

. It initiates some distribution of the electric potential inside the domainΩ Ω . We propose that measurements of 
necessary values would be realized on the boundary curve Γ  with another, no active electrodes. Let the external 
field in scanning parallel beam scheme be electrostatic homogeneous in the direction orthogonal to the line . 
Then we can use the mathematical model (6), (18) and (19) for this kind of tomography, which, in the particular 
case of symmetrical structures, was considered in [10] and is called “GR-tomography”. 

l

Formula (20) demonstrates the difference between the proposed approach and the electric resistance or 
capacitance tomography, in which only the normal component ),( ϕpJ  is used. In ERT the given normal 
component ),( ϕpJ  means the value of the normal current in one point of the intersection of the line l  and 
boundary. Function ),( ϕpv  is measured. In ECT the function ),( ϕpv  is given and the normal component of 

),( ϕpJ  is related with measured mutual capacitances.  
In the proposed scheme the function ),( ϕpv  might be measured and ),( ϕpJ can be calculated 

approximately, using known characteristics of the external field. For example, if the right hand sides in the 
boundary conditions (16) and (17) are given for every scanning angleϕ , we can obtain, in accordance with a 
parallel beam measurement scheme, the data ),( ϕpv  and ),( ϕpJ  for [ ]1,1−∈p , [ ]2,2 ππϕ −∈ . 

In both ERT and ECT schemes the electric field is produced by the same electrodes that serve as measuring 
elements, i.e. the electrodes are active. The mutual influence of electrodes is the cause of impossibility to use a 
greater number of electrodes and obtain sufficiently large number of significant measurements. It is very 
important that in proposed scheme measuring electrodes are not active and serve only for acquisition of data 

),( ϕpv  and ),( ϕpJ . Therefore, the proposed approach gives, in principle, the possibility to use a large number 
of electrodes and measurements of the input values of functions ),( ϕpv  and ),( ϕpJ  and reconstruct the desired 
image more perfectly. 

We have constructed the numerical realization of formula (20) that we call "scanning GR–algorithm".  
This algorithm does not require solving any equation, because the Radon transform can be inverted by a fast 
algorithm using discrete FFT algorithm, which is realised in MATLAB.  

Analysis of formulas for inverse Radon transformation shows that its instability for discrete noised data is 
equivalent to the instability of the problem of the numerical differentiation of the noised function ),( ϕpv  with 
respect to the variable . The regularization of the inversion of Radon transform was constructed by author on 
the base of the Recursive Smoothing (RS) by splines [8]. Theoretical and numerical justification of the 
regularization properties of this type of smoothing are presented in [8] - [10], [12]. If for structures with 
piecewise constant characteristics the set 

p

{ }0 1 2ˆ , ,ε ε ε ε=  of the known values iε  is given, then the algorithm 
includes also the projection of the pre-reconstructed data to the set ε̂  with respect to the absolute or relative 
criterion [10]. 
 
9. NUMERICAL EXPERIMENTS FOR INVERSE PROBLEM 
We tested scanning GR-algorithm on mathematically simulated model examples. The experiments presented 
correspond to piecewise constant structure inside the unit circle and the external field such that 1),( ≡ϕpJ . In 
these model examples we use the mentioned interpretation of approximate form of the boundaries of internal 
elements to simulate approximations for functions 0,1( , )u p ϕ . We calculate these by solving the Cauchy 

problem for eqn. (6) for values of variable τ  outside the internal elements, and then we prolong it inside 1Ω  
using traditional boundary conditions of the continuity of the potential and the normal (with respect to the 
approximate rectangle boundary) component of the induction. 

In the first example the no homogeneous structure has the general characteristic of background ( )0 , 1x yε = , 

and two different internal elements have ( )1 , 2x yε = , ( )2 ,x yε 3= . Results of the structure image restoration 
in the first experiment are presented in Figure 11: graph (a) – exact distribution; graphs (b), (c), (d) – 
reconstruction of the structure image by GR–algorithm for the number of discrete points   100, 
respectively. 

,20=n ,40
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Figure 11:   Reconstruction of three component structure obtained using exact input data by GR-algorithm. 
 

A more difficult case for the reconstruction corresponds to the greater scale of values { 0 1 2ˆ , , }ε ε ε ε= , when the 
post-processing (projection) is required even for the pre-reconstruction that used exact data.  In the second 
example we use exact values in discrete points for the case  ( )0 , 2x yε = , ( )1 , 1x yε = , . In 
Figure 12 there are presented reconstructions of the structure image by GR–algorithm: graph (a) – exact 
distribution; graph (b) – reconstruction without post-processing, graph (c) - reconstruction with the absolute 
criterion projection;  (d) – reconstructions with the relative criterion projection.  

( )2 , 7x yε = 0

 

 
 

Figure 12. Reconstruction of three component structure by GR-algorithm for 0 2ε = , 1 1ε = , 2 70ε = . 
 
The third presented numerical experiment corresponds to the reconstruction of the structure, using simulated 
noised input data, i.e. values of a function )),,(1)(,(),( ϕδϕνϕν ppp += where ),( ϕδ p  is the 
randomized function with estimation: δϕδ ≤Ω][||),(|| Cp . Results of the regularized reconstruction for n=31, 

05.0=δ  are presented in Figure 13: graph (a) - exact ( , )g x y ; graph (b) - reconstruction with noised ),( ϕν p  

without regularization; graph (c) - reconstruction with noised ),( ϕν p  with RS only; graph (d) - reconstruction 

with noised ),( ϕν p  by RS and the absolute criterion projection of pre-reconstructed image. 
 
10. CONCLUSIONS AND ACKNOWLEDGEMENT  
The new approach and GR-method for the solution of the direct boundary value problems for the elliptic and 
parabolic differential equations as well as for one inverse coefficient problem are proposed. The approximation 
properties of the constructed algorithms are justified by numerical experiments. The developed approach can be 
applied to more general, including multidimensional, problems. The author acknowledges VIEP BUAP for the 
partial support of the investigation. 
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Figure 13. Reconstruction of three component structure using noised data by regularised GR-algorithm 
for 0 1ε = , 1 2ε = , 2 3ε = . 
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